References

References

 

[Buckinham14] Buckingham, S. D., Partridge, F. A., & Sattelle, D. B. (2014). Automated, high-throughput, motility analysis in Caenorhabditis elegans and parasitic nematodes: Applications in the search for new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 226-232.

[deCarlos12] de Carlos, I., Valmas, N., Hiliard, M. A. & Lu H. Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies. (2012)

[González16] José Félix González Rojo, et al. Prototipo de visión artificial de bajo coste para desarrollo de prácticas docentes, ISBN:978-84-617-4298-1 Jornadas de Automática, 2016.

[Hosttetler17] Hostettler, L., Grundy, L., Käser-Pébernard, S., Wicky, C., Schafer, W. R., & Glauser, D. A. (2017). The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo. G3: Genes| Genomes| Genetics, g3-116.

[Hunt17] Hunt, P. R. (2017). The C. elegans model in toxicity testing. Journal of Applied Toxicology, 37(1), 50-59.

[Kumar15] Kumar, Jitendra; Park, Kyung-Chae; Awasthi, Anjali; Prasad, Birendra. Silymarin Extends Lifespan and Reduces Proteotoxicity in C. elegans Alzheimer’s Model. CNS & Neurological Disorders – Drug Targets (Formerly Current Drug Targets – CNS & Neurological Disorders), Volume 14, Number 2, March 2015, pp. 295-302(8)

[Maxwel08] Maxwell C. K. Leung, Phillip L. Williams, Alexandre Benedetto, Catherine Au, Kirsten J. Helmcke, Michael Aschner, Joel N. Meyer; Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol Sci 2008; 106 (1): 5-28.

[O’Reilly13] O’Reilly, L. P., Luke, C. J., Perlmutter, D. H., Silverman, G. A. & Pak, S. C. C. elegans in high-throughput drug Discovery. NIH (2013) Elsevier

[Ramón17] D. Ramón, P. Martorell & S. Genovés. (2017) Nuevas estrategias en la evaluación de alimentos funcionales. Revista: El reto de la alimentación en el futuro. Sociedad Española de bioquímica y biología molecular.

[Sánchez16] Percoco, G., & Salmerón, A. J. S. (2016). 3D image based modelling for inspection of objects with micro-features, using inaccurate calibration patterns: an experimental contribution. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-11.

[Sánchez12] AJ Sánchez-Salmerón, et al. Device for the micro-inspection of flat surfaces and method of use, WO Patent 2012007782 A1.

[Sánchez11] Grau, R., Sánchez, A. J., Girón, J., Iborra, E., Fuentes, A., & Barat, J. M. (2011). Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy. Food Research International, 44(1), 331-337.

[Sánchez10a] Ricolfe-Viala, C., & Sánchez-Salmerón, A. J. (2010). Robust metric calibration of non-linear camera lens distortion. Pattern Recognition, 43(4), 1688-1699.

[Sánchez10b] Qin, Y. et al. (2010). Micromanufacturing engineering and technology. William Andrew.

[Sánchez09] AJ Sánchez-Salmerón, et al. Device for supplying micro component, has conveying unit that conveys micro component at predetermined speed after suitable positioning. ES Patent WO2009112616- A.

[Sánchez05] Sanchez-Salmeron, A. J., Lopez-Tarazon, R., Guzman-Diana, R., & Ricolfe-Viala, C. (2005). Recent development in micro-handling systems for micro-manufacturing. Journal of materials processing technology, 167(2), 499-507.

[Winston02] Winston, W.M., Molodowitch, C. & Hunter, C. P. (2002) Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1. Science 295 (5564) 2456-2489.

[Yoon16] Yoon, S., Piao, H., Jeon, T. J., & Kim, S. M. (2016). Behavior Analysis of C. elegans to Electrical Stimulus in a Highly Controlled Microfluidic Chip. Biophysical Journal, 110(3), 652a-653a.